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Abstract—A double-dipole antenna backed by a ground plane
has been fabricated for submillimeter wavelengths. The dou-
ble-dipole antenna is integrated on a thin dielectric membrane
with a planar detector at its center. Measured feed patterns at
246 GHz agree well with theory and demonstrate a rotationally
symmetric pattern with high coupling efficiency to Gaussian
beams. The input impedance is around 50 €, and will match
well to a Schottky diode or SIS detector. The double-dipole an-
tenna served as the feed for a small machined parabolic reflec-
tor. The integrated reflector had a measured gain of 37 dB at
119 pm. This makes the double-dipole antenna ideally suited as
a feed for high resolution tracking or for long focal length case-
grain antenna systems.

I. INTRODUCTION

HE USE of thin dielectric membranes for millimeter-

wave integrated-circuit antennas is now a well estab-
lished technique for high-efficiency designs [1], [2]. The
membranes are very thin compared to a free-space wave-
length and the antennas do not suffer from dielectric and
substrate-mode losses. Recent measurements on inte-
grated-horn and corner-reflector antennas [3], [4] show
well behaved patterns and main-beam efficiencies greater
than 85%. However, these antennas have differing E and
H-plane patterns and a relatively high cross-polarization
component (—16 dB) in the 45°-plane. They also require
a controlled process of anisotropic etching of silicon or
GaAs wafers. It is possible to integrate a radiating struc-
ture consisting of two dipole antennas on a dielectric
membrane and backed by a ground plane that results in
rotationally symmetric patterns and a very low cross-

polarization component (Fig. 1). The double-dipole an-.

tenna is very simple to fabricate, resulting in similar di-
rectivities to the integrated-horn antenna, and has a high
coupling efficiency to f/0.7-f/1 reflector systems.

For high resolution tracking, or for efficient coupling
to long focal length antenna systems, a much higher gain
antenna is needed. This can be readily accomplished by
integrating a reflector with the double-dipole design (Fig.
2). The design is similar to the dielectrically filled para-
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Fig. 1. Top view and side view of double-dipole antenna.
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Fig. 3. Methods of arraying. Arraying the feed (top) and arraying the re-
flector (bottom).

bola investigated by Siegel ez al. [5]. However, it requires
no dielectric and associated matching layer which are dif-
ficult to fabricate at submillimeter-wave frequencies. The
design exhibits high coupling efficiency to Gaussian
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beams and can be easily arrayed for imaging systems ap-
plications. The imaging may be accomplished by fabri-
cating multiple reflectors or by using multiple double-
dipole antennas in the focal region of a single reflector
(Fig. 3).

II. DoUuBLE-DIPOLE ANTENNA

Double-dipole antennas have been previously investi-
gated at millimeter-wave frequencies and have showed
promise for high-efficiency applications [6]-[8]. The de-
sign consists of a double-dipole antenna integrated on a
dielectric membrane and backed by a ground plane. The
detector is integrated at the center of the coplanar strip-
line. A low-pass filter is used to isolate the IF/bias lines
from the antenna. For far-field pattern calculations, the
antenna current distribution is given by the standing-wave
current on an open-circuited transmission line. The
method of images is used to account for the ground plane
[9]. The radiation pattern can be made rotationally sym-
metric by the choice of the antenna lengths (/), the an-
tenna spacing (d) and the ground-plane distance from the
membrane (h).

Two sets of double-dipole antennas with rotationally
symmetric patterns were designed. Design #1 had param-
eters I = 0.7\, d = 0.55A, h = 0.77\, Z (coplanar strip)
= 300 Q (calculated from [10]) and a measured input
impedance on a 2 GHz microwave model of a nearly con-
stant 50  for a +£5% bandwidth (Fig. 4). The calculated
main-beam efficiency (to —20 dB) is 88%. The coupling
efficiency to Gaussian beams is 84 %, where O, is varied
to maximize gaussicity (see Appendix). The design has a
10-dB beamwidth of 78° and a directivity of 11.7 dB.
Design #2 included a short stub off the detector and had
parameters [ = 0.9\, d = 0.59\, h = 0.73\, Z (coplanar
strip) = 200 Q and a measured input impedance centered
around 50 + j50 Q for a +5% bandwidth. The calculated
main-beam efficiency of design #2 (to —20 dB) is 91%
and the coupling-efficiency to Gaussian beams is 88%.
This design has a }0-dB beamwidth of 70° and a directiv-
ity of 13.2 dB. Table I shows that the two designs main-
tain good efficiencies for at least a +5% bandwidth. Both
feed antennas can illuminate a reflector uniformly in phase
and with a —10 dB to —20 dB taper depending on the size
of the reflector. Also, both antenna designs yield imped-
ances which are compatible with Schottky and SIS detec-
tors at around 200-300 GHz. Therefore both designs are
ideal as feeds for paraboloidal reflectors.

The measured electromagnetic coupling between two
double-dipole antennas (for either design) in the H-plane
was lower than —20 dB and —30 dB for a center-to-center
spacing of 1\ and 1.5\, respectively. The coupling in the
E-plane was negligible for center-to-center spacing greater
than 1.25\. It is therefore possible to array the antennas
for diffraction-limited imaging.

Design #1 was built for 246 GHz applications (Fig. 5).
For measurement purposes, a bolometer was integrated at
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Fig. 4. Measured input impedance of feed with a 2 GHz model. The x’s
represent the theoretically predicted input impedances.

the center of the coplanar stripline. The bolometer imped-
ance was 80  with a responsivity of 10 V/W at a 100
mV bias. The pattern was measured at 234-258 GHz us-
ing 78-86 GHz Gunn sources, and a wideband (220-270
GHz) tripler. The Gunn sources were modulated at 300
Hz, and the output of the bolometer was fed to a PAR-
124 A lock-in amplifier. The signal-to-noise ratio was bet-
ter than 20 dB.

The measured patterns agree very well with theory up
to 45° (Fig. 6) where diffraction effects from the mea-
surement set-up dominate. The theory predicts a sidelobe
level lower than —13 dB in the E-plane at around 60 de-
grees and a —27 dB cross-polarization component in the
45°-plane at about 2 degrees. The sidelobe level could not
be confirmed due to the measurement set-up, but a cross-
polarization component less than —22 dB was measured
at 30-35°. Pattern measurements at 0.95f; (234 GHz) and
1.05f, (258 GHz) agree well with theory and result in
symmetric patterns (Fig. 7). The slight dip of 1 dB at nor-
mal incidence at 258 GHz is not predicted by theory and
could not be explained.

III. DESIGN OF THE REFLECTOR ANTENNA

A. Theory

The far-field patterns of a parabolic reflector with a
double-dipole feed are found by computing the Fourier
integral of the fields in the aperture plane chosen to be the
focal plane of the reflector [9], [11]. The reflector is as-
sumed to be in the far field of the feed, and a ray optics
approach is used to find the fields on the aperture. For a
30A-diameter reflector illuminated by the double-dipole
feed considered above, the 3 dB and 10 dB beamwidths
are 4.4° and 8°, respectively, resulting in a 39 dB gain.
The cross-polarization was also computed and found to
be below —30 dB.

When the feed is displaced from the focus, as in the
case of a focal plane imaging system, a search is needed
to find the specular point for any given observation point
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TABLE 1
CHARACTERISTICS OF TWO DOUBLE-DIPOLE DESIGNS

ANTENNA #1: (I = 0.7\, d = 0.55N, h = 0.7\, Z,,, = 300 Q)

Freq. Zanr Gain X-pol €mp (—20 dB) €causs (B0 = 30°)  €qauss (B0 = 27°)
090,  ~500 — — - 64.7% 66.5%
0.95f, ~50Q 11.8 dB —27dB 82% 77.4% 77.1%

fo ~50 Q 11.7 dB —26 dB 88% 83.4% 81.1%
1.05f, ~50Q 11.2 dB —25dB 91% 84.8% 80.9%
1.10f, ~50Q — — — 82.7% 77.3%

ANTENNA #2: (I = 0.9\, d = 0.59\, h = 0.73\, Z,, = 200 Q)

Freq. Zant Gain Xpol 6, (=20dB)  €gauss (B0 = 27°)  €qauss (Bo = 24°)
0.90f, - — — — 66.5% 67.9%
0.95f, 30+,250 134dB —28dB 85% 82.1% 80.9%

fo 50 +50Q 13.2dB  -29dB 91% 88.1% 84.9%
1.05f, 80 +,60.2 12.8dB -30dB 93% 88.7% 84.1%
1.10f, - — -~ — 86.3% 80.9%

— E-plane
-~ — H-plane

~10 - — = = 45-plane

Relative gain, dB

-15

Fig. 5. Photograph of the double-dipole antenna for 246 GHz. The two T
rectangles to the left of the antenna are metal-insulator-metal capacitors for 50 o5 0 25 50
the IF-filter.

Angle of incidence, degrees

in the aperture plane (Fig. 8). The specular point must be o—
found in order to determine the phase (since the phase is r
no longer uniform across the focal plane) and the ampli- i
tude (resulting from the angle the ray is emitted from the -
feed). One way to find the specular points is to use Fer-
mat’s principle of stationary optical path length. It is a
particularly useful technique since it can be used with any
arbitrary position of feed and any arbitrary surface [11].
For a given aperture point, the specular point is found by
minimizing the optical path length. A good initial guess
is to assume that the specular point is directly beneath the
aperture point, since a small movement of the feed will
create only a slight movement in the specular point. Fer-
mat’s principle is a well known variational expression and L : 1
thus the program always converges. In fact, on average, B TE— 5 P 0
six iterations were needed to converge to a sufficient ac- . Angle of incidence, degrees

curacy in the far-field patterns. Fig. 9 shows the resulting ;

H-plane patterns for a lateral displacement of the feed  Fig. 6. Measured and theoretical double-dipole patterns at 246 GHz.
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from the focus. One can see that for a one wavelength
feed displacement, the main beam shifted by about 3 de-
grees. For a two wavelength displacement the beam
shifted about 6 degrees, with the highest sidelobe still be-

low —19 dB.

Fig. 10. Photograph of the double-dipole antenna suspended above a cir-
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B. Experiment

A double-dipole antenna with parameters of design #1
was built for a wavelength of 119 um on a 1 pm-thin
membrane with dimensions of 4 X 4 mm (Fig. 10). The
ground-plane was built on a similar membrane and con-
sisted of a circular patch of evaporated gold 1000 A thick
with a diameter of 2.5\, The ground plane was aligned
and attached to the antenna wafer using spacers made of
silicon wafers polished to approximately 92 um thick-
ness. It was later realized that the spacers were too thick,
and the resulting measured H-plane feed patterns were not
optimal. Fortunately, the Fourier transform property of
the reflector is forgiving and good reflector patterns were
obtained. The double-dipole antenna and ground-plane are
very small compared to the reflector’s aperture, thus re-

—20 dB (—30 dB) for 1A (1.5X\) separation, thus allowing
the antenna to be arrayed for diffraction-limited imaging.
Measured patterns with the double-dipole antenna illu-
minating a parabolic reflector at 119 um confirmed the
theoretically predicted reflector E-plane patterns to
—15 dB, in spite of the double-dipoles being poorly
aligned to their ground-plane. The double-dipole antenna
is a simple antenna for submillimeter-wave tracking and
imaging applications.

APPENDIX

The field representatlon of a Gaussian beam is of the
form: Eguu(0) = & exp™?/%", The coupling efficiency
between an antenna pattern and a Gaussian beam is cal-
culated using the formula [12], [13]:

2

'S S [0 - F(O, )] exp~ /% sin 9 df do

NGauss =

sulting in little loss due to aperture blockage. Also, the
IF/bias lines are orthogonal to the polarization of the re-
ceived wave resulting in minimal scattering loss.

In order to take the reflector patterns, the reflector was
mounted on an x-y-z-tilt positioner and moved around un-
til maximum power was received and symmetrical pat-
terns were measured. The parabolic reflector was ma-
chined out of aluminum to a surface finish of around
120 A and is 30\ (3.57 mm) in diameter. Fig. 11 shows
the measured E, H, and 45°-plane patterns at 119 um.
The calculated gain from the measured data is 37 dB. Fig-
ure 12 shows the measured E-plane compared with the-
ory. The theoretical pattern included the effect of aperture
blockage from the 2.5\ ground plane. The disagreement
below —15 dB is likely due to the improperly assembled
feed structure. The H-plane pattern was wider than the
design, and we believe that this is due to the H-plane feed
pattern being narrower than expected. The measurements
show that high-gain antenna patterns are easily obtainable
at submillimeter frequencies. Measured patterns also con-
firmed the shift in the main lobe for a displaced feed, in-
dicating the option of arraying the antennas for diffrac-
tion-limited imaging.

IV. CoNcLUSION

A high-efficiency submillimeter-wave antenna has been
presented. It is a double-dipole design backed by a ground
plane which results in nearly equal E, H and 45°-plane
patterns with a gain of 12-13 dB and an input impedance
of around 50 ©. A 246 GHz design showed very good
agreement with the theoretical patterns and a measured
cross-polarization level below —22 dB. The electromag-
netic coupling between two sets of dipoles was below

SS |F(0, $)|* sin 6 df do H exp20/% sin 6 df d¢

where F(0, ¢) is the far-field pattern of the antenna, and
€., is the co-pol unit vector. The value Oy is varied to
maximize the coupling efficiency.
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